All posts by Materials Science 2020
New nano-barrier for composites could strengthen spacecraft payloads

The University of Surrey has developed a robust multi-layed nano-barrier for ultra-lightweight and stable carbon fibre reinforced polymers (CFRPs) that could be used to build high precision instrument structures for future space missions.
FRP is used in current space missions, but its applications are limited because the material absorbs moisture. This is often released as gas during a mission, causing the material to expand and affect the stability and integrity of the structure. Engineers try to minimise this problem with CFRP by performing long, expensive procedures such as drying, recalibrations and bake-out- all of which may not completely resolve the issue.
In a paper published by the journal Nature Materials, scientists and engineers from Surrey and Airbus Defence and Space detail how they have developed a multi-layered nano-barrier that bonds with the CFRP and eliminates the need for multiple bake-out stages and the controlled storage required in its unprotected state.
Surrey engineers have shown that their thin nano-barrier—measuring only sub-micrometers in thickness, compared to the tens of micrometers of current space mission coatings—is less susceptible to stress and contamination at the surface, keeping its integrity even after multiple thermal cycles.
Professor Ravi Silva, Director of the Advanced Technology Institute at the University of Surrey, said: “We are confident that the reinforced composite we have reported is a significant improvement over similar methods and materials already on the market. These encouraging results suggest that our barrier could eliminate the considerable costs and dangers associated with using carbon fibre reinforced polymers in space missions.”
Christian Wilhelmi, Head of Mechanical Subsystems and Research and Technology Friedrichshafen at Airbus Defence and Space, said: “We have been using carbon-fibre composites on our spacecraft and instrument structures for many years, but the newly developed nano-barrier together with our ultra-high-modulus CFRP manufacturing capability will enable us to create the next generation of non-outgassing CFRP materials with much more dimensional stability for optics and payload support. Reaching this milestone gives us the confidence to look at instrument-scale manufacturing to fully prove the technology.”
Professor David Sampson, Vice-Provost Research and Innovation at the University of Surrey, said: “This research project continues the University of Surrey’s long and close partnership with Airbus. Advanced materials for spacecraft is a further excellent example of how Surrey supports the Space Sector. We have been doing so for decades, and we are fully committed to strengthening our support for the sector going forwards. I look forward to more brilliant advances from the Surrey-Airbus relationship in years to come.”
2-D materials: Arrangement of atoms measured in silicene
Computing with molecules: A big step in molecular spintronics
Spintronics or spin electronics in contrast to conventional electronics uses the spin of electrons for sensing, information storage, transport, and processing. Potential advantages are nonvolatility, increased data processing speed, decreased electric power consumption, and higher integration densities compared to conventional semiconductor devices. Molecular spintronics aims for the ultimate step towards miniaturization of spintronics by striving to actively control the spin states of individual molecules. Chemists and physicists at Kiel University joined forces with colleagues from France and Switzerland to design, deposit and operate single molecular spin switches on surfaces. The newly developed molecules feature stable spin states and do not lose their functionality upon adsorption on surfaces. They present their results in the current issue of Nature Nanotechnology.
List of Nanotechnology_2020 Speakers


To book your speaker slot submit your abstrcat at : https://nanotechnology.heraldmeetings.com/submit-abstract
WhatSapp No: +1 609-540-7643
Mail Id: nanotech@heraldmeetings.org
KeyNote talk

Herald Meetings brings forth International Conference on Nanotechnology and Nanomaterials the one which is going to takes place at most historic place in Europe Rome, Italy on March 02-03, 2020 brings together leading experts, scientists, researchers, engineers and policymakers in the field of Nanotechnology to Exchange information on the latest innovation and progress. Where you can Connect| Learn| Collaborate
Theme: Inquisition of Nanotechnology for better prospective
How safe is Nanotechnology research in Southeast Asia

To book your slot register at: https://nanotechnology.heraldmeetings.com/registration
Researchers in Malaysia are asking whether existing legal and regulatory frameworks in Southeast Asia are robust enough to consider the safety issues surrounding the technology.
Hailed by some as the “next industrial revolution”, nanotechnology is likely to have far reaching impacts on every aspect of our lives, from the clothes we wear to the medicines we take.
The International Labour Organization has predicted that by 2020, 20% of all consumer and industrial products will use nanotechnology.
his is a world so small that it cannot be seen through a light microscope. However, the properties that make nanotechnology so promising – the ability to manipulate matter at atomic and molecular levels – have also raised health and safety concerns given the incredibly fast research developments in this field. Various countries have developed online programs, such as the European Community’s “Nanopinion“, to educate their citizens about nanotechnology as well as review regulations surrounding nanotechnology research.
Legal researcher Mohammad Ershadul Karim at the University of Malaya is looking into the legalities of nanotechnology research in Asia. Karim has found that there are significant challenges to developing a proper legal framework as our understanding of the exact dangers of nanoparticles on human health and the environment is limited.
Nanotechnology in Singapore: Market Report
The Future of Nanotechnology in Medicine

Smart Pills:
While smart pill technology is not a new idea — a “pill cam” was cleared by the FDA in 2001 — researchers are coming up with innovative new applications for the concept.
For example, MIT researchers designed an ingestible sensor pill that can be wirelessly controlled. The pill would be a “closed-loop monitoring and treatment” solution, adjusting the dosage of a particular drug based on data gathered within the body (e.g. gastrointestinal system).
An example of this technology in action is the recent FDA-approved smart pill that records when medication was taken. The product, which is approved for people living with schizophrenia and bipolar disorder, allows patients to track their own medication history through a smartphone, or to authorize physicians and caregivers to access that information online.
Nanotechnology in medicine: innovation to market

Nanomaterials possess exceptional unique nanoscale size dependent physical, optical, catalytic, electrical, and chemical properties that can be controlled (scalable). These properties are entirely different than their bulk counterpart. One of the exciting feature of nanotechnology is its utility in the field of nanomedicine, therapeutics, and medical devices [1]. When these small size materials are introduced into biological systems, their extremely small size and their unique nanoscale properties make it possible to use them as delivery vectors and probes for biological diagnostics, imaging and therapeutics . Infact, when size decreases, the surface area to volume ratio of materials becomes very large, so that a vast suitable surface is available for chemical interactions with biomolecules. This critically implied that nanotechnology is facing a transition into the tangible advancement of human therapeutics. Recently, we have seen the beginning of multiple clinical trials of nanomaterials; both for therapeutics and for medical devices.
When we talk about nanomedicine, its aim can be broadly defined as the comprehensive production of materials to control, either repair, defence or therapy, and improvement of different human biological systems. For this purpose different nano-engineered structures are applied at molecular level. Here, nanoscale size materials can be included due to their active components in the size range from one nanometre to hundreds of nanometres
Nanomaterials based drug delivery systems can interact with biomolecules positioned on both cell surface and within the cell. Thus nano based drug delivery systems not only transfer encapsulated or grafted chemotherapeutics, but can also deliver them within the cellular system once they have penetrated. Such systems can also be modified and decorated with different functionalizing agents such as antibodies to develop target specific drug delivery system . At present only two families of therapeutic nanomedicine-albumin and liposomes nanoparticles are clinically established worldwide.
Nano Drug Delivery Systems (DDS) generally possess three vector generation; First generation vectors comprising nano spheres and nano capsules. Second generation vectors of nanoparticles that are coated with hydrophilic polymers such as Polyethylene Glycol (PEG). Third generation vectors which combines a biodegradable core and a Polymer Envelope (PEG) with a functionalization agent. Such systems offer inherent merits of protecting drug from being degraded in the body before it is actually delivered to its target, enhance drug absorption, better control over drug distribution to tissue and avoiding side effects by preventing interaction with normal cells. Many FDA approved nanomedicines are available for clinical use

